How can we measure the efficiency of an electric fan?
When you’re out shopping for an electric fan, it might be a good idea to look for one that not only keeps you cool, but keeps your energy consumption low, too. Using an anemometer, Kill-A-Watt meter and a little bit of math, you can figure out how efficient your fan really is.
What is Efficiency?
In the broadest sense, efficiency can be defined as useful output over total input:
Measuring Power Input and Output
We can measure the electrical power that our fan draws using a Kill-A-Watt meter plugged between the fan and outlet. But what about the wind power? First, let’s try to find the power generated by the fan in an area where the wind speed is constant. Wind power is the rate at which kinetic energy is added to our air stream. Given a volume of air in the stream, wind power is the kinetic energy in that volume divided by the time it takes for that volume to pass a given plane:
Figure 1.
Setting Up The Experiment
We set the fan to blow at its highest speed setting, and used a digital anemometer to measure air speed at a distance of 20cm from the front grate of the fan, which was close enough so that the airflow would not have dissipated too much, but not so close that the grate would have an effect on the air flow. In order to get as accurate readings as possible, we wanted to minimize the number of solid objects in front of the fan that might interrupt air flow, so we placed the anemometer on a stand instead of holding it up by hand. The stand could be adjusted vertically and moved horizontally, which allowed us to divide the area in front of the fan into a a 10 x 10 grid and take measurements where the grid lines intersect, shown below:
Figure 2.
Figure 3.
Analyzing The Data
Now that we have collected all of our data, there are two ways we could go about finding efficiency. The simplest thing to do would be to just calculate the power generated by the fan in each square, and sum the squares up. A more sophisticated method would be to fit our data to a guessed function, and then calculate the power generated there — the basic principle is still the same (adding up the power on many different squares), but by using a function we can make each square much smaller, thus improving the accuracy of our efficiency estimate.
Finding Efficiency: Simple Method
In order to plot our data on a 2-D graph, we note that the wind speed distribution of the fan is approximately symmetric, and plot velocity versus R, as shown below:
Figure 4.
At this point, we can use this velocity data to find the power generated by the fan in each 5cm x 5cm area, and sum those to get an estimate of the total power generated by our fan. In doing this, we found that the fan generates approximately 6.2 W of power. Measurements with the Kill-A-Watt meter showed 41.6 W of electrical power input, allowing us to calculate efficiency:
Finding Efficiency: Curve Fitting Method
Since, as we noted above, the wind speed distribution of the fan is approximately symmetric, we end up with multiple wind speeds for the same R distance from the fan’s axis. We can plot the average wind speed for each R and add error bars showing the standard deviation of each. Looking at our new plot (below, left), we noticed that the plot looks similar to two Gaussian functions, one positive and one negative, overlaid on top of each other. This gives us the function:
Figure 5.
Note: Using these coefficients for our function, a region of negative wind speed (i.e. wind blowing in the opposite direction) appears around R = 0. Since in this case this is not feasible, we have taken all of the negative values and set them to be a wind speed of 0 m/s. By using a continuous, smooth function instead of discrete points, we can make the areas of constant wind speed much smaller, limited only by the amount of computing power we want to devote to this problem. We use MATLAB to sum everything up, and found that the bladed fan output approximately 5.5 W of wind power.
Figure 6.
Figure 7.
Figure 8.
This technique of using an anemometer and Kill-A-Watt meter can be used to determine the efficiency of any electric fan. Try the measurement yourself with different styles of fans like the ones pictured above! For a look at the relation between wind and power from a different perspective, check out our articles on wind turbines, linked below: